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ABSTRACT 

Some recent problems are no longer formulated in terms of imprecise facts, missing data or 

inadequate measuring devices. Instead, questions pertaining to knowledge and information itself 

arise and can be phrased independently of any particular area of knowledge. The problem considered 

in the present work is how to model a problem solver that is trying to find the answer to some query. 

The problem solver has access to a large number of knowledge systems that specialize in diverse 

features. In this context, feature means an indicator of what the possibilities for the answer are. The 
I 

, knowledge systems should not be accessed more than once, in order to have truly independent sources 

of information. Moreover, these systems are allowed to run in parallel. Since access might be 

expensive, it is necessary to construct a management policy for accessing these knowledge systems. 

To help in the access policy, some control knowledge systems are available. Control knowledge 

systems have knowledge about the performance parameters status of the knowledge systems. In 

order to carry out the double goal of estimating what units to access and to answer the given query, 

diverse pieces of evidence must be fused. We use the Dempster-Shafer Theory of Evidence to pool the 
knowledge bases. The present work demonstrates how pooling evidence can determine the necessary 

strategy to solve the problem as well as solving it. The present work deals with the path the problem 

~ 

I 

I 
I 

I solver could follow to answer the query. 
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INTRODUCTION 

Some recent problems are no longer formulated in terms of imprecise facts, missing data or 

inadequate measuring devices. Many problems today deal with hnowledge and information itself and 

can be phrased independently of any particular area of knowledge . Problems in such diverse fields as 

psychology, engineering, artificial intelligence and decision making can exhibit similar formats when 

it comes to dealing with information and uncertainty. It is desira.ble to be able to handle information, 

not in any particular context, but in the form of general principles valid in many situations. 

In [ l ]  [2] and [8], the authors develop a model for a course of action-feedback loop that is useful 

when considering learning in repeated environments. This model is not applicable to the case where 

one-shot decisions are to be made. For such decisions, the decisioa maker accumulates information 

and after enough accumulation has taken place, certain alternatives are ruled out. This process is 

repeated till there is only one remaining alternative. Presumably this last alternative represents the 

decision to be taken. This model is studied in [91. In this setting, it is essentia1 to be able to update 

the general state of information every time an alternative is ruled out. 

A powerful method in artificial intelligence is to look at  certain features of a problem and try to 

put together the evidence coming from these features in order to recognize the corresponding pattern. 

In this context, feature means any indication of what the possibilities of a correct answer are. Special 

cases of such an approach are, for example, taken in computer vision, see [31, [131, and [141. It is clear 

that with such an approach we need to have some kind of mechanism available for evidence pooling. 

We shall use the D-S theory [121 to carry out this pooling of evidence. In fact, the D-S theory will be 

used for two purposes: (a) plan the solution to a query by accessing some pertinent knowledge 

systems (b) define dynamically a policy that would determine what KSs to access at a particular 

time. The problem we consider here is quite general. Given a query Q we look a t  a set of possible 

answers to Q. We of course would like to determine the precise element of the set that represents the 

correct answer to Q. In order to accomplish this, specialized knowledge systems are consulted. The 

execution is driven by a table that to each goal associates a sequence of control strategies. A control 

strategy is a set of simultaneous constraints on the desired performance characteristics of the 

knowledge systems to be consulted. A number of control strategies weighted by the strength of belief 

in each constraint is given in the table. The weight of each constraint is the degree of belief that a 

specific value, for some performance parameter, is optimal. This will be compounded with the 

uncertainty that some family of knowledge systems has the desired performance parameter value. 

1 0 - 3  



After the completion of each goal, new data will be read in. A control sequence defines a 

subcycle of the goal execution. After the completion of each subcycle, an update on the information 

status is performed. In order to obtain information about the knowledge systems, special knowledge 

systems, called control knowledge systems, are consulted. Based on the pooled evidence provided 

dynamically by the control knowledge systems, a policy of access is determined. 

There are two common ways of representing uncertain information about propositions. The 

most straightforward (employed in PROSPECTOR) provides a number P(AIE) which is the 

probability of proposition A being true, given current evidence E. One problem with this approach is 

that the precision of P(AIE) is not known. In fact, Garvey et a1 note “A likelihood represented by a 

point probability value is usually an overstatement of what is actually known.” Another problem 

with this approach is that we do not have the amount of evidence for and against A. The other way to 

proceed is to attach not one but two numbers with each proposition (MYCIN employs this method). 

The two numbers correspond to measures of belief and disbelief. This approach certainly removes one 

ofthe above criticisms. It is still true that the precision relative to the two numbers is not known. 
Another criticism that may be leveled is that no formal theory indicates how evidence for and against 

might be combined. Also, it is not clear how to detect conflict. Finally, it has been shown that results 

degrade quite fast as uncertainty increases. The D-S theory is used here because it avoids, for the 

most part, the problems outlined above. 

I We assume that a large number of knowledge sources is available because we do want to access 

independent sources and therefore do not want to access the same source more than once. In this 

context, “independent sources” means that the errors in these sources are independent. To 
I approximate independence, we may force a delay before any knowledge source is reaccessed. When 

all the steps have been taken, a final evaluation is made to determine the answer to the query. 

10-4 



CONCEPTS AND NOTATIO!B 

We start by defining the concept of belief structure. For a complete account of general belief 

structures and related material, the reader is referred to [ I Z J .  If X denotes some set and dX) denotes 

the power set of X, a belief structure is a function m from dX) into [OJ] satisfying 

( i )  m ( 0 ) = 0  

A C X  

Elements A € dX) for which m(A) > 0 are called focal elements of rn. 

Now we define the Belief and Plausability measures on 417 

If B € 5 (X) 

Suppose we have n experts whose opinions are equally respected. Assume that the opinion of 

the ith expert is that a specified object is to be found in some set Ai. Given these n opinions we now ask 

the question: what is the probability that this specified object is in some set B? Assume for ease of 

notation that A I ,  A2, ..AK are subsets of B, A K + I ,  A K + ~ ,  ..&+e intersect B and its complement and 

that AK+e+1, ...An, are subsets of the complement of B. A lower bound on the probability that the 

object is in B is Kln, an upper bound is (K+C)ln. We hence see that a possible interpretation of 

BEL (B) and Pes (B) is a “Lower probability and a higher probability’’ of B.  Another way to interpret 
BEL and Pes is to identify the set B with the proposition: “The ohject is in the set B.” The truth or 

falsity of this proposition is determined by the available evidence, in this case, the opinion of the n 

experts. With this interpretation Bel (B) is interpreted to be the degree of support for proposition B .  

Pes (B)  is the degree to which one fails to refute proposition B (All, A2, ... A K + ~ ,  ... AK+C all intersect B 

and this constitute evidence that fails to refute B).  With this interpretation, Pes (1 B )  is interpreted 

as the degree to which proposition B is refuted while Pts(B) - BeZ!’B) is the degree of ignorance about 

proposition B,  indeed: 
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and since the above Ai do intersect B and its complement, they fail to refute B and they fail to refute 

-.B. Ignorance on proposition B is the degree to which one fails to refute B and 1B. An important 

property of belief structures is that they allow to fuse evidence from independent sources of 

information. If ml and m~ are belief structures defined on the same set X then the combination rule, 

see [12], states that they combine to yield a belief structure m3 on X. The focal element of m3 are 

given by taking all possible intersections of focal elements of ml with focal elements of m2 and 

Kis  the measure of conflict between the two sources and comes from pairs of disjoint focal 

elements. In fact 

If rn3 is given by the formula above, we write m3 = mi m2. The formula above is true if the 

information sources are independent. For a very readable interpretation of the combination formula, 

the reader is referred to the article by L.A. Zadeh 1161. 

In [l], [2], and [8] the authors have defined the concept of an abstract information system. In 

this model, decisions are made sequentially and information is received as a consequence of the 

cource of action taken. That is, each cycle of the decision-information acquisition loop is initiated by 

the decision maker (DM) choosing a cource of action (COA) and the data generated by this COA is 

fedback to the DM which completes the cycle. This model is most relevant to situations requiring 

frequent decisions on a regular basis such as ordering equipment or choosing stocks. The DM can 

take the same COA on successive cycles or change to different COA, possibly returning to a COA 

chosen earlier. Uncertainty has been incorporated into this model. Different policies for selecting a 

COA on a given cycle have been discussed in 171. The model discussed in the works cited above is not 

relevant to "one-shot decisions" where the DM uses all available information to-pick a single COA 
which, once chosen, is irreversible. 

In [9] the authors study situations where one-shot decisions are called for. In this context there 

may be many minor decisions, such as which information source to access and how to interpret 

I information received. The DM constructs a set of possible COAs and then, based on the information 

received, eliminates the less promising COAs until only one remains. This, of course, is the COA 
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taken. The main idea in [9] is that for each fixed data vector, the DMcreates a conditional belief 

structure and then after K cycles, combines these masses conditioned by the data vectors into a single 

mass conditioned by history. From that, the belief and plausability measures conditioned on history 

are formed and whenever the plausability of a COAi falls below the belief of some other COAj, COAi 

is eliminated from consideration. The general problem of gathering evidence through classical 

statistics is that, as already pointed out in the introduction, an enormous amount of data is required. 

In addition, with such approaches, results quickly deteriorate if uncertainty is present. Usually some 

version of Baye’s rule of inference is used as a remedy to the large amount of micro-events present, see 

for example [4] and [ti]. In [lo] J. Pearl makes the point that a calmplete probability space is not 

required. One needs only to estimate likelihood ratios. However a large number of such likelihood 

ratios would still be required. 

In the next section we will outline an approach that uses the DS theory to collect evidence from 

different cycles as in [9]. We will collect evidence by analyzing diifferent features of the problem. 

Breaking a problem down to subsets of features has already been tried in diverse fields of artificial 

intelligence. For example for computer vision, see [3], [131, and [14]. In most of the existing 

approaches, information on specific features is relatively static and no update of that information is 

incorporated into the DS approach. In this work, an update mechanism will be built into the decision 

making process. Also the DS theory will not only be used to identify a solution of the problem but also 

will determine how to access the knowledge sources (KSs) Since! access to some KSs might be difficult 

and since we will a t  the very least delay reaccessing a KS, it is particularly important to determine a 

viable policy for access. We will also allow different KSs to be multi-tasked on particular cycles or 

sub-cycles. Finally it is important to have a model that is potentially applicable to many situations 

and for this reason we have made the discussion as general as possible. 

RESULTS 

The setting is as follows: Let Q denote some specific query and let HQ be the corresponding 

frame of discernment, i.e. HQ is a set of possible answers to Q and one of the elements of HQ is the 

correct answer. Of course we do not know a priori which e1emen.t is the correct answer. The data 

vector x is of the form 
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where s is large and where f t i  € Fi(l  SiSs). Fi is a set of (not necessarily numerical) values 

pertaining to the ith feature. For example for some i, Fi could be different values of light intensity. 

These values could range in the set {low, average, fairly high, high}. For another i, Fi could be color 

values such as {red, blue, green} etc... Associated with each set Fi we have a knowledge system KSi 

that only reports on values in Fi . Thus for some values of i, KSi may report only on the value of the 

color. Since we would like in principle, not to access any KSi more than once (in order to truly have 

independent sources of information), we assume that s is large enough to yield appropriate 

information to obtain an answer to Q. Given a feature value f t i  € Fi we define a corresponding 

subset Of HQ by setting 

A ( ( i )  = (g €HQlithfeatureofghasvaluefi k i  I 
A (f$) can be identified with the proposition: “The ith feature has value f $ ” .  In fact i fG C HQ then 

G can be identified with the proposition: “The answer is in G”. Thus r(HQ) can be identified with the 
set of relevant propositions. 

As already mentioned earlier, the value of the ith feature will be reported by KSi. However, 

there is some uncertainty built into the reporting of KSi. Thus for the corresponding i, KSi might 

report thatthe intensity is low .6, is average .3 and is fairly high . I  

In general, let aik be the degree of belief that the ith feature value is f i k .  Clearly 

We now define a belief structure mi : 

Another way to state this is to say that aik is the degree of belief that any element of Affik) is 

possibly the correct answer. Thus to sum up: in order to get the answer to Q, we look a t  the values of 

some features. These values are reported by specialized KSs with some degree of uncertainty built 

into the report. It is also clear that mi, 1 5  i S s constitute independent sources of information since 

they deal with distinct features. ! 
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Since there is a large number of KSs to access, it is important to formulate a policy on how to 

access KSis. We base this policy on performance characteristics. Let P I ,  P2, ... Pe be sets of 

performance values e.g. P1 could be a set of values corresponding to the cost of access, P2 could 

correspond to response delays etc... To each Pi corresponds a special KS,  distinct from the ones 

mentioned above, which knows about performance (as opposed to features). To distinguish these KSs, 

we call them control KSs and denote them by CKSs. Thus CKSi lhas knowledge of values in Pi. This 

knowledge is much more dynamic than the knowledge possessed by KSis, since performance of the 

KSs strongly depends on time. We would like to have some of the KSi run in parallel. To this end we 

set 

H p  C r {KS , ,  . . . KS,} 

to be all possible combinations of KSs that may run in parallel. %me of the combinations are of 

course ruled out as some of the KSs might not be compatible or may have been already used. As 

earlier, for p t i  € Pi define 

A ( P : ~ )  € H P 

where each element of A (pika) is such that it's ith performance characteristic value ispiki. For 

example i f p t i  means the cheapest access and if A (p t i )  = flS12 , KS1g) then KS12 or KS1g might be 

the cheapest KS to access. 

In order to find an answer to Q, we will have a sequence of goals to satisfy. The process will be 

table-driven in the sense that each intermediate goal will correspond to a sequence of control 
strategies. A control strategy will be a set of performance constraints to be simultaneously satisfied. 

Ultimate control strategies with their respective degrees of belief may be given. For example a 

control strategy could be: get the cheapest access KSs (2) and also the smallest response delays (.7). 

By a subcycle we mean the execution of a particular control strat#egy. By a cycle we mean the 

execution of one goal. We use the symbolj, to refer to the kth subcycle of cyclej. 

On each subcycle, CKSi assigns a mass to A(pik). Thus 

n!' I (A ( p f ) )  = bk 1 1  ck 
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where b,k marks the degree of belief that for the ith performance it's the performance value pik that is 
I 

I needed and cik is the degree of belief that any element in A (pi') has ith performance value pi&. 

We have b l  = 1 for all i 
k 

0 S c: 5 1 for all iand K 

and n: (KS1, K S , ,  ... K S s ) =  1 - b: c: . It  isassumed that we alwayshave 
k 

A p .  f K S l , K S ,  ,... K S s )  ( 9  1 
That is, everypikdetermines a proper subset of KS1, ... KS$. Note that nikdo satisfy the 

properties of a belief structure that the excess mass, after bit{ has been assigned, is distributed over 

all KSs. Assume that a particular control strategy dictates that we look at  particular values in 

performance spaces P I ,  P2, etc. ... Let XI = KSi,, ... KSi) be the set of KSs whose first performance 

characteristic matches PILI, similarly let X2, X3, ... be sets of KSs whose performance characteristic 

matches p2'z ,p3%, etc... Of course this information is given by CKSl, CKS2, ... at the time the 

driving table is consulted for the appropriate control strategy to be followed. Thus the focal elements 

of nrjk are of the form r (XI) X Hp X Hp X ... The focal elements of ndk are of the form 

H p  x r(X2) X H p  X... etc ... 

We now use the D-S theory to formulate a policy of selecting a set of KSs. Of course each Xi 
reported by CKSi is assumed to be compatible with H p  Le., i f X i  = K S 2 ,  KS5, KSIO} and K S 2 ,  KS5} 
€ Hp but Xi 4 Hp  then KSIo will not be considered, but running KS2 and KSs in parallel will be 

considered. For example 

n i k (  ( K S a , K S 5 )  X H p X  H p X  ... 1 
will denote the degree of belief that for some value p:f1 for access cost (assuming access cost is P I )  

that value pJzl is the best to consider compounded with the degree of belief that KS2 and KS5 have an 

access cost value of p:f1. Now on subcycle j k  if we consider, for example, three performance 

characteristics which, for ease of notation, we assume to be P I ,  P2, P3 then we will consider the 

performance space 

HJk P = € (xl) x € (x,) x € (XJ 
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where € (Xi, (1 5 i S3) are the possible values of Xi (there may be several possible values of Xi due to 

uncertainty wherever p,ki is the best value to consider in Pi). If Yi, Y2, Y3 are possible values of Xi, 

X2, and X3 then nik, for example, will be induced on the set X € (X2) X € (X3) by 

thus, in contrast to He, Hik (which is the set of answers of what KSs to use on subcyclejk) is highly 

dynamic and is generated by the appropriate control sequence. In general Hik is a set of elements of 

the form (Ai, A2, .. At,) where tk is the number of performance characteristics considered on a 

particular control strategy on cycle j and each A is an appropriate set of KSs.  We now combine the 

masses on H i k  by setting 

> = e  tk ni j k  

i = I  
The problem is to select the "best combination" V = ( E l ,  132, ... Btk).  Note again that 

independence of information sources is justified as different CKSs are pooled. To get the "best 

combination '' U we maximize 

over V € HpjL, and relative to the pooled belief structure n'k. The rationale for the optimization 

described above is to maximize the support of V over the support of its competitors. If several 

elements are tied for this optimization, we select one of the elements at random. If V is an optimal 
element we make an arbitrary selection 6i € Bi , (I Si 5 tk). Each 6i denotes some KS € Bi. Now we 

follow the policy of running the bi in parallel. We of course keep track of which bi have been run and 

update H,, appropriately after each subcycle, so no KS will be accessed twice. 

Now at the beginning of cyclej assume that the belief structure relative to subsets of HQ is 
given by rd. Of course d' itself was obtained by pooling together the belief structures mi where i 

ranges over all features considered prior to cyclej. On the first isubcycle of cyclej, assume that the 

policy described above indicates that features il, io, ... it should be looked at. Pooling the 

corresponding KSs we obtain the belief structures m i , j ~  (I S US t ) and we form 
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At the end of cyclej, m' is updated by 

m J + l + m J @ A m  J l  @ A m J 2 . . .  @ A m  J" 

where u denotes the number of control sequences in cycle j .  

At the completion of each subcycle we check if 

We use the current value of m, to do this. Of course that current value is given by 

m J c m J - l @ A m  J l  @...@Amik 

if we have just completed subcyclejk. 

If the inequality above is satisfied we rule out the proposition " the value of the ith feature is 

fi". The rationale for doing this is if, for example, the upper probability for value green falls below 

the lower probability of some color value, say blue, then we should rule out that the color is green. Of 

course we could embellish this rule and require for instance that Bel (A ( f i j )  ), at least initially, 

exceeds PZs ( A  f i b )  by some margin-which could be relaxed as data accummulates. We then should 

perform a post-elimination update. There are many ways to do this. A straightforward method would 

be to distribute the mass of A ( f ik )  uniformly over the remaining A(fj) .  Of course if we have some 

additional information, the distribution may be chosen not to be uniform. We also could use the 

plausability of the remaining values of Fi to guide our redistribution of mass. 

At the end of the cycle we have reduced the possible number of values in some of the sets Fie We 

have at this point followed the actions dictated by the current goal. Now we take a new reading of the 

data and proceed to work in a similar manner on the next goal. Aspecial note should be made when 

the control strategy is to reduce ignorance, which was defined in the previous section. Say the largest 

ignorance is for {ql,  45,471 C He. The CKS in charge of ignorance (which is treated here as a 

particular feature) has access to all Fi (1 5; i ZS s) and the corresponding A (f?) .  To reduce the 

ignorance on {41,95,471 one must get hold of those KSs that do not deal with 41,45,47 simultaneously 

(otherwise the ignorance may continue to propagate). Thus ifKSs has information about a set 

containing say 41 but not 45 or 47, then KSs is a viable candidate to reduce ignorance. 
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Finally when all the actions corresponding to all of the listed goals have been executed we end 

up with some of the sets Fi reduced (e.g. value, green and red map have been eliminated from F3, if the 

third feature is color value) Now to get the answer to query Q we maximize 

relative to the final value of n'. 

The rationale for the optimization defined above is of course the same as earlier. We want to 

maximize the support for a particular answer over its competitors. 

To sum up we have used the D-S theory to pool the evidence given by the CKSs to select a 

policy by which we would use the appropriate KSs to find informiltion relative to query Q. Then we 

pooled the evidence collected from the KSs to rule out certain propositions about feature values. Each 

time we ruled out a proposition we had to redistribute its mass over remaining propositions 

pertaining to a specific feature. When all the steps are completed we pick the answer that maximizes 

support over its competitors. Of course, there are other ways to p o l  beliefs from different sources and 

for a sample of these methods we refer the reactor to [GI, [lll, [ltil, and [ I  71. 

Finally, if it is desired to access KSs more than once, some delay must be built into reaccessing 

any KS in order to approximate the independence of information sources. Recently, theories more 

general than the D-S approach have been studied. More flexible rules than the D-S rule of 

combination have been developed. These settings will be investigated in future work. 
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